Hall	Ticket	Num	ber:

-	and the second se	 	 				
	1	 	 		 	 the second s	
	1 1						
	f 1						
	(I						
		2 1					
			 . 1				
			 : 1	1			

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (C.S.E.) I-Semester Supplementary Examinations, May/June-2017

Logic and Switching Theory

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 X 2=20 Marks)

- 1. Convert (634)₈ to binary.
- Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (i) X - Y and (ii) Y - X using 1's complements.
- 3. Implement the following Boolean function with NAND-NAND logic $F = \Sigma m(0,1,3,5)$.
- 4. Give the classification of logic families.
- 5. Design Half adder using only NOR gates.
- 6. Write the design procedure for combinational circuits.
- 7. Write the excitation tables of JK and D flip flops.
- 8. What is race-around condition in a flip flop?
- 9. Draw the state diagram of MOD -10 counter.
- 10. Differentiate between ripple counters and synchronous counters.

Part-B $(5 \times 10 = 50 \text{ Marks})$

-	Construct an even parity seven bit code to transmit the data i)1010 ii)1110 Show the truth table for each of the following functions and find its simplest POS form. i) $f(x,y,z) = xy+xz$ ii) $f(x,y,z) = x'+yz'$	[4] [6]
	Minimize the following expression using Tabulation procedure $F(A,B,C,D) = \Sigma m(0,4,8,10,12,13,15) + d(1,2).$	[5]
b)	Implement the following Boolean expression by OR-AND 2 level logic circuit. F(x,y,z) = ((x+y').z)+(x'yz')	[5]
/	Design odd parity checker and generator circuits. Implement the following function using suitable multiplexer F (A, B, C, D) = $\Sigma(1, 3, 4, 11, 12, 13, 14, 15)$	[4] [6]
-	Draw the state diagram of a circuit that recognizes the sequence 1011. Realize the circuit given in the following state diagram using JK Flip Flops.	[4] [6]

15. a)	What is universal shift register? Explain its operation.	[5]
b)	Design a 3-bit binary counter using T FF that has a repeated sequence of 6 states. 000-001-010-011-100-101-110. Give the state table, state diagram & logic diagram.	[5]
16. a)	Implement the given Boolean function using 8 : 1 multiplexer $F(x,y,z) = \Sigma(1, 3, 5, 6)$.	[5]
	Reduce the following function using K-map technique f (w, x, y, z) = π (0, 3, 4, 7, 8,	[5]
	10, 12, 14) + d (2, 6).	
17. Ar	swer any two of the following:	
a)	Explain the working of carry look ahead adder circuit.	[5]
b)	Differentiate Moore and Mealy machines with block diagram.	[5]
c)	Draw the logic diagram of 3 bit binary up /down synchronous counter and explain with	[5]
	truth table.	