\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. II Year (C.S.E.) I-Semester Supplementary Examinations, May/June-2017

Logic and Switching Theory

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A (10 X $2=20 \mathrm{Marks})$

1. Convert (634)s to binary.
2. Given the two binary numbers $X=1010100$ and $Y=1000011$, perform the subtraction
(i) $\mathrm{X}-\mathrm{Y}$ and
(ii) $\mathrm{Y}-\mathrm{X}$ using 1's complements.
3. Implement the following Boolean function with NAND-NAND logic $F=\Sigma m(0,1,3,5)$.
4. Give the classification of logic families.
5. Design Half-adder using only NOR gates.
6. Write the design procedure for combinational circuits.
7. Write the excitation tables of JK and D flip flops.
8. What is race-around condition in a flip flop?
9. Draw the state diagram of MOD - 10 counter.
10. Differentiate between ripple counters and synchronous counters.

$$
\text { Part-B }(5 \times 10=50 \text { Marks })
$$

11. a) Construct an even parity seven bit code to transmit the data i) 1010 ii) 1110
b) Show the truth table for each of the following functions and find its simplest POS form.

$$
\begin{array}{ll}
\text { i) } f(x, y, z)=x y+x z & \text { ii) } f(x, y, z)=x^{\prime}+y z^{\prime}
\end{array}
$$

12. a) Minimize the following expression using Tabulation procedure

$$
F(A, B, C, D)=\Sigma m(0,4,8,10,12,13,15)+d(1,2)
$$

b) Implement the following Boolean expression by OR-AND 2 level logic circuit.

$$
F(x, y, z)=\left(\left(x+y^{\prime}\right) \cdot z\right)+\left(x^{\prime} y z^{\prime}\right)
$$

13. a) Design odd parity checker and generator circuits.
b) Implement the following function using suitable multiplexer $F(A, B, C, D)=\Sigma(1,3,4$, $11,12,13,14,15)$
14. a) Draw the state diagram of a circuit that recognizes the sequence 1011.
b) Realize the circuit given in the following state diagram using JK Flip Flops.

15. a) What is universal shift register? Explain its operation.
b) Design a 3-bit binary counter using T FF that has a repeated sequence of 6 states. 000-001-010-011-100-101-110. Give the state table, state diagram \& logic diagram.
16. a) Implement the given Boolean function using $8: 1$ multiplexer $F(x, y, z)=\Sigma(1,3,5,6)$.
b) Reduce the following function using K-map technique f ($\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$) $=\pi(0,3,4,7,8$, $10,12,14)+d(2,6)$
17. Answer any two of the following:
a) Explain the working of carry look ahead adder circuit.
b) Differentiate Moore and Mealy machines with block diagram.
c) Draw the logic diagram of 3 bit binary up/down synchronous counter and explain with truth table.
